NACH OBEN

Publikationen

RNA-Thermometer

  • Pienkoß S, Javadi S, Chaoprasid P, Holler M, Roßmanith J, Dersch P, Narberhaus F:  RNA thermometer-coordinated assembly of the Yersinia injectisome. J Mol Biol in press. (2022) PubMed
  • Pienkoß S, Javadi S, Chaoprasid P, Nolte T, Twittenhoff C, Dersch P, Narberhaus F:  The gatekeeper of Yersinia type III secretion is under RNA thermometer control. PLoS Pathog 17:e1009650. (2021)
  • Brewer SM, Twittenhoff C, Kortmann J, Brubaker SW, Honeycutt J, Massis LM, Pham THM, Narberhaus F, Monack DM: A Salmonella Typhi RNA thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathog 17:e1009345 (2021) PubMed
  • Twittenhoff C, Brandenburg VB, Righetti F, Nuss AM, Mosig A, Dersch P, Narberhaus F: Lead-seq: transcriptome-wide structure probing in vivo lead (II)ions. Nucleic Acids Res 48:e71 (2020) PubMed
  • Twittenhoff C, Heroven AK, Mühlen S, Dersch P, Narberhaus F: An RNA thermometer dictates production of a secreted bacterial toxin. PLoS Pathog 16:e1008184 (2020) PubMed
  • Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F: RNA thermometers in bacterial pathogens. Microbiol Spectr. 10.1128/microbiolspec.RWR-0012-2017  (2017) PubMed
  • Righetti F, Nuss AM, Twittenhoff C, Beele S, Urban K, Will S, Bernhart SH, Stadler PF, Dersch P, Narberhaus F: The temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 113:7237-7242 (2016) PubMed
  • Roßmanith J, Narberhaus F: Exploring the modular nature of riboswitches and RNA thermometers. Nucleic Acids Res 44:5410-5423 (2016) PubMed
  • Weber GG, Kortmann J, Narberhaus F, Klose KE: An RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc Natl Acad Sci USA 111:14241-14246 (2014)
    Commentary in Science http://www.sciencemag.org/content/346/6207/twil.full.pdf (Film der Deutschen Welle) PubMed
  • Narberhaus F: RNAs at fever pitch. Nature (News & Views) 502:178-179 (2013) PubMed
  • Kortmann J, Narberhaus F: Bacterial RNA thermometers: Molecular zippers and switches. Nat. Rev. Microbiol. 10:255-265 (2012) PubMed
  • Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus, F, Dersch P: Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 8:e1002518 (2012) PubMed
  • Kortmann J, Sczodrok S, Rinnenthal J, Schwalbe H, Narberhaus F: Translation on demand by a simple RNA-based thermosensor. Nucleic Acids Res. 39:2855-2868 (2011) PubMed
  • Waldminghaus T, Heidrich N, Brantl S, Narberhaus F: FourU - A novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413-424 (2007) PubMed
  • Chowdhury S, Maris C, Allain FH, Narberhaus F: Molecular basis for temperature sensing by an RNA thermometer. EMBO J. 25:2487-97 (2006) PubMed

Kleine RNAs und kleine Proteine

  • Eisfeld J, Kraus A, Ronge C, Jagst M, Brandenburg VB, Narberhaus F: A LysR-type transcriptional regulator controls the expression of numerous small RNAs in Agrobacterium tumefaciens. Mol Microbiol doi.org/10.1111/mmi.14695 (2021) PubMed
  • Kraus A, Weskamp M, Zierles J, Balzer M, Busch R, Eisfeld E, Lambertz J, Nowaczyk MM, Narberhaus F: Arginine-rich small proteins with a domain of unknown function DUF1127 play a role in phosphate and carbon metabolism of Agrobacterium tumefaciens. J Bacteriol 202:e00309-20 (2020) PubMed
  • Knoke LR, Abad Herrera S, Götz K, Justesen BH, Günther Pomorski T, Fritz C, Schäkermann S, Bandow JE, Aktas M: Agrobacterium tumefaciens small lipoprotein Atu8019 is involved in selective outer membrane vesicle (OMV) docking to bacterial cells. Front Microbiol. 10.3389/fmicb.2020.01228 (2020) PubMed
  • Overlöper A, Kraus A, Gurski R, Wright PR, Georg J, Hess WR, Narberhaus F: Two separate modules of the conserved regulatory RNA AbcR1 address multiple target mRNAs in and outside of the translation initiation region. RNA biol. 11:624-640 (2014) PubMed
  • Wilms I, Overlöper A, Nowrousian M, Sharma CM, Narberhaus F: Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens. RNA biol. 9:446-457 (2012) PubMed
  • Wilms I, Voss B, Hess W R, Leichert L I, Narberhaus F: Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80:492-506 (2011) PubMed

Regulierte Proteolyse

  • Peter SA, Isaac JS, Narberhaus F, Weigand JE: A novel, universally active C-terminal protein degradation signal generated by alternative splicing. J Mol Biol 433:166890 (2021) PubMed
  • Sauerbrei B, Arends J, Schünemann D, Narberhaus F: The Lon protease removes excess signal recognition particle protein in Escherichia coli. J Bacteriol 202:e00161-20 (2020) PubMed
  • Thomanek N, Arends J, Lindemann C, Barkovits K, Meyer HE, Marcus K, Narberhaus F: Intricate crosstalk between lipopolysaccharide, phospholipid and fatty acid metabolism in Escherichia coli modulates proteolysis of LpxC. Front Microbiol 9:3285 (2019) PubMed
  • Arends J, Griego M, Thomanek N, Lindemann C, Kutscher B, Meyer HE, Narberhaus F: An integrated proteomic approach uncovers novel substrates and functions of the Lon protease in Escherichia coli. Proteomics. 10.1002/pmic.201800080 (2018) PubMed
  • Bittner LM, Westphal K, Narberhaus F: Conditional proteolysis of the membrane protein YfgM by the FtsH protease depends on a novel N-terminal degron. J Biol Chem 290:19367-19378 (2015) PubMed
  • Schäkermann M, Langklotz S, Narberhaus F: FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp. J Bacteriol 195:1912-1919 (2013) PubMed
  • Westphal K, Langklotz S, Thomanek N, Narberhaus F: A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 287:42962-42971 (2012) PubMed
  • Langklotz S, Baumann U, Narberhaus F: Structure and function of the bacterial AAA protease FtsH. BBA – Mol. Cell Res. 1823:40-48 (2012) PubMed
  • Langklotz S, Narberhaus F: The Escherichia coli replication inhibitor CspD is subject to growth-regulated degradation by the Lon protease. Mol Microbiol 80:1313-1325 (2011) PubMed
  • Langklotz S, Schäkermann M, Narberhaus F: Control of LPS biosynthesis by FtsH-mediated proteolysis of LpxC is conserved in enterobacteria but not in all Gram-negative bacteria. J Bacteriol 193:1090-1097 (2011) PubMed
  • Führer F, Langklotz S, Narberhaus F: The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 59:1025-36 (2006) PubMed

Membran Biogenese

  • Czolkoss C, Borgert P, Poppenga T, Hölzl G, Aktas M, Narberhaus F: Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. Environ Microbiol 23:6993-7008. (2021) PubMed
  • Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F: Agrobacterium tumefaciens type IV and type VI secretion systems reside in detergent-resistant membranes. Front Microbiol 12:754486. (2021) PubMed
  • Kleetz J, Vasilopoulos G, Czolkoss S, Aktas M, Narberhaus F: Recombinant and endogenous ways to produce methylated phospholipids in Escherichia coli. Appl Microbiol Biotechnol 105:8837-8851. (2021) 
  • Kleetz J, Welter L, Mizza AS, Aktas M, Narberhaus F: Phospholipid N-methyltransferases produce various methylated phosphatidylethanolamine derivatives in thermophilic bacteria. Appl Environ Microbiol DOI: 10.1128/AEM.01105-21 (2021) PubMed
  • Vasilopoulos G, Moser R, Petersen J, Aktas M, Narberhaus F:  Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. BBA Mol Cell Biol Lipids DOI: 10.1016/j.bbalip.2021.158926 (2021)
  • Groenewold MK, Hebecker S, Fritz C, Czolkoss S, Wiesselmann M, Heinz DW, Jahn D, Narberhaus F, Aktas M, Moser J: Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB. Mol Microbiol 10.1111/mmi.14154 (2019) PubMed
  • Danne L, Aktas M, Unger A, Linke WA, Erdmann R, Narberhaus F: Membrane remodeling by a bacterial phospholipid-methylating enzyme. mBio 8:e02082-16 (2017) PubMed
  • Czolkoss S, Fritz C, Hölzl G, Aktas M: Two distinct cardiolipin synthases operate in Agrobacterium tumefaciens. PLoS One 11:e0160373 (2016) PubMed
  • Danne L, Aktas M, Gleichenhagen J, Grund N, Wagner D, Schwalbe H, Hoffknecht B, Metzler-Nolte N, Narberhaus F: Membrane-binding mechanism of a bacterial phospholipid N-methyltransferase. Mol Microbiol 95:313-331 (2015) PubMed
  • Moser R, Aktas M, Fritz C, Narberhaus F: Discovery of a bifunctional cardiolipin/ phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92:959-972 (2014) PubMed
  • Aktas M, Danne L, Möller P, Narberhaus F: Membrane lipids in Agrobacterium tumefaciens: Biosynthetic pathways and importance for pathogenesis. Front Plant Sci. 5:109. doi: 10.3389/fpls.2014.00109 (2014) PubMed
  • Moser R, Aktas M, Narberhaus F: Phosphatidylcholine biosynthesis in Xanthomonas campestris via a yeast-like acylation pathway. Mol Microbiol 91:736-750 (2014) PubMed
  • Aktas M, Gleichenhagen J, Stoll R, Narberhaus F: S-adenosylmethionine (SAM)-binding properties of a bacterial phospholipid N-methyltransferase. J Bacteriol 193:3473-3481 (2011) PubMed
  • Aktas M, Narberhaus F: In vitro characterization of the enzyme properties of the phospholipid N-methyltransferase PmtA from Agrobacterium tumefaciens. J Bacteriol 191:2033-2041 (2009) PubMed
  • Wessel M, Klüsener S, Gödeke J, Fritz C, Hacker S und Narberhaus F: Virulence of Agrobacterium tumefaciens requires phosphatidylcholine in the bacterial membrane. Mol Microbiol 62: 906-915 (2006) PubMed

Bakterielles Prädationsverhalten

  • Thiery S, Kaimer C: The predation strategy of Myxococcus xanthus. Front. Microbiol. 11:2 (2020) doi: 10.3389/fmicb.2020.00002 PubMed
  • Thiery S & Kaimer C: Myxococcus xanthus - Einem bakteriellen Räuber auf der Spur. BioSpektrum 24: 449 (2020) doi: 10.1007/s12268-020-1390-6 
  • Arend K et al.: Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. Appl Env Microbiol (2020) doi: 10.1128/AEM.02382-20